A PI3-Kinase–Mediated Negative Feedback Regulates Neuronal Excitability

نویسندگان

  • Eric Howlett
  • Curtis Chun-Jen Lin
  • William Lavery
  • Michael Stern
چکیده

Use-dependent downregulation of neuronal activity (negative feedback) can act as a homeostatic mechanism to maintain neuronal activity at a particular specified value. Disruption of this negative feedback might lead to neurological pathologies, such as epilepsy, but the precise mechanisms by which this feedback can occur remain incompletely understood. At one glutamatergic synapse, the Drosophila neuromuscular junction, a mutation in the group II metabotropic glutamate receptor gene (DmGluRA) increased motor neuron excitability by disrupting an autocrine, glutamate-mediated negative feedback. We show that DmGluRA mutations increase neuronal excitability by preventing PI3 kinase (PI3K) activation and consequently hyperactivating the transcription factor Foxo. Furthermore, glutamate application increases levels of phospho-Akt, a product of PI3K signaling, within motor nerve terminals in a DmGluRA-dependent manner. Finally, we show that PI3K increases both axon diameter and synapse number via the Tor/S6 kinase pathway, but not Foxo. In humans, PI3K and group II mGluRs are implicated in epilepsy, neurofibromatosis, autism, schizophrenia, and other neurological disorders; however, neither the link between group II mGluRs and PI3K, nor the role of PI3K-dependent regulation of Foxo in the control of neuronal excitability, had been previously reported. Our work suggests that some of the deficits in these neurological disorders might result from disruption of glutamate-mediated homeostasis of neuronal excitability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ras regulates sympathetic neuron survival by suppressing the p53-mediated cell death pathway.

In this report, we examine how the Ras protein regulates neuronal survival, focusing on sympathetic neurons. Adenovirus-expressed constitutively activated Ras (RasV12) enhanced survival and the phosphorylation of Akt (protein kinase B) and MAP kinase (MAPK), two targets of Ras activity. Functional inhibition of endogenous Ras by adenovirus-expressed dominant-inhibitory Ras (N17Ras) decreased ne...

متن کامل

An essential role for the SHIP2-dependent negative feedback loop in neuritogenesis of nerve growth factor–stimulated PC12 cells

The local accumulation of phosphatidylinositol (3,4,5) trisphosphate (PIP(3)) and resulting activation of Rac1/Cdc42 play a critical role in nerve growth factor (NGF)-induced neurite outgrowth. To further explore the mechanism, we visualized PIP(3), phosphatidylinositol (3,4) bisphosphate, and Rac1/Cdc42 activities by fluorescence resonance energy transfer (FRET) imaging in NGF-stimulated PC12 ...

متن کامل

Title : A PI 3 K - mediated negative feedback regulates Drosophila motor neuron excitability

Negative feedback processes, which can enable maintenance of neuronal homeostasis, are widely observed in neuronal systems 1-3. For example, neuronal silencing via tetrodotoxin application both in vivo and in vitro increases excitability 4-6. This effect occurs in vitro via both increased sodium currents and decreased potassium currents. However, the signalling pathways responsible for these ex...

متن کامل

EGF stimulates mesangial cell mitogenesis via PI3-kinase-mediated MAPK-dependent and AKT kinase-independent manner: involvement of c-fos and p27Kip1.

Epidermal growth factor (EGF) is a potent mitogen for mesangial cells. The mechanism by which EGF induces DNA synthesis is not precisely understood. We investigated the role of phosphatidylinositol (PI)3-kinase in regulating mitogenesis. EGF increased PI3-kinase activity resulting in stimulation of PDK-1 and Akt kinase activities. Blocking of PI3-kinase activity using LY-294002 or adenoviral ex...

متن کامل

Glomerular endothelial PI3 kinase-α couples to VEGFR2, but is not required for eNOS activation.

Vascular endothelial growth factor (VEGF)-dependent signals are central to many endothelial cell (EC) functions, including survival and regulation of vascular tone. Akt and endothelial nitric oxide synthase (eNOS) activity are implicated to mediate these effects. Dysregulated signaling is characteristic of endothelial dysfunction that sensitizes the glomerular microvasculature to injury. Signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Genetics

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2008